Skip to main content

ExcIEEEAC8B

Class Description

IEEE 421.5-2005 type AC8B model. This model represents a PID voltage regulator with either a brushless exciter or DC exciter. The AVR in this model consists of PID control, with separate constants for the proportional (<i>K</i><i><sub>PR</sub></i>), integral (<i>K</i><i><sub>IR</sub></i>), and derivative (<i>K</i><i><sub>DR</sub></i>) gains. The representation of the brushless exciter (<i>T</i><i><sub>E</sub></i>, <i>K</i><i><sub>E</sub></i>, <i>S</i><i><sub>E</sub></i>, <i>K</i><i><sub>C</sub></i>, <i>K</i><i><sub>D</sub></i>) is similar to the model type AC2A. The type AC8B model can be used to represent static voltage regulators applied to brushless excitation systems. Digitally based voltage regulators feeding DC rotating main exciters can be represented with the AC type AC8B model with the parameters <i>K</i><i><sub>C</sub></i> and <i>K</i><i><sub>D</sub></i> set to 0. For thyristor power stages fed from the generator terminals, the limits <i>V</i><i><sub>RMAX</sub></i> and <i>V</i><i><sub>RMIN</sub></i><i> </i>should be a function of terminal voltage: V<i><sub>T</sub></i> x <i>V</i><i><sub>RMAX</sub></i><sub> </sub>and <i>V</i><i><sub>T</sub></i> x <i>V</i><i><sub>RMIN</sub></i>. Reference: IEEE 421.5-2005, 6.8.

Attributes

NameTypeDescription
kaPUVoltage regulator gain (<i>K</i><i><sub>A</sub></i>) (> 0). Typical value = 1.
kcPURectifier loading factor proportional to commutating reactance (<i>K</i><i><sub>C</sub></i>) (>= 0). Typical value = 0,55.
kdPUDemagnetizing factor, a function of exciter alternator reactances (<i>K</i><i><sub>D</sub></i>) (>= 0). Typical value = 1,1.
kdrPUVoltage regulator derivative gain (<i>K</i><i><sub>DR</sub></i>) (>= 0). Typical value = 10.
kePUExciter constant related to self-excited field (<i>K</i><i><sub>E</sub></i>). Typical value = 1.
kirPUVoltage regulator integral gain (<i>K</i><i><sub>IR</sub></i>) (>= 0). Typical value = 5.
kprPUVoltage regulator proportional gain (<i>K</i><i><sub>PR</sub></i>) (> 0 if ExcIEEEAC8B.kir = 0). Typical value = 80.
seve1FloatExciter saturation function value at the corresponding exciter voltage, <i>V</i><i><sub>E1</sub></i>, back of commutating reactance (<i>S</i><i><sub>E</sub></i><i>[V</i><i><sub>E1</sub></i><i>]</i>) (>= 0). Typical value = 0,3.
seve2FloatExciter saturation function value at the corresponding exciter voltage, <i>V</i><i><sub>E2</sub></i>, back of commutating reactance (<i>S</i><i><sub>E</sub></i><i>[V</i><i><sub>E2</sub></i><i>]</i>) (>= 0). Typical value = 3.
taSecondsVoltage regulator time constant (<i>T</i><i><sub>A</sub></i>) (>= 0). Typical value = 0.
tdrSecondsLag time constant (<i>T</i><i><sub>DR</sub></i>) (> 0). Typical value = 0,1.
teSecondsExciter time constant, integration rate associated with exciter control (<i>T</i><i><sub>E</sub></i>) (> 0). Typical value = 1,2.
ve1PUExciter alternator output voltages back of commutating reactance at which saturation is defined (<i>V</i><i><sub>E1</sub></i>) (> 0). Typical value = 6,5.
ve2PUExciter alternator output voltages back of commutating reactance at which saturation is defined (<i>V</i><i><sub>E2</sub></i>) (> 0). Typical value = 9.
veminPUMinimum exciter voltage output (<i>V</i><i><sub>EMIN</sub></i>) (<= 0). Typical value = 0.
vfemaxPUExciter field current limit reference (<i>V</i><i><sub>FEMAX</sub></i>). Typical value = 6.
vrmaxPUMaximum voltage regulator output (<i>V</i><i><sub>RMAX</sub></i>) (> 0). Typical value = 35.
vrminPUMinimum voltage regulator output (<i>V</i><i><sub>RMIN</sub></i>) (<= 0). Typical value = 0.

Relationships

Ancestors

Descendents

No descendent classes

Associations

None